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Rate-Determining Cooperative Effects of Bimolecular Reactions in Solution
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An expression for the rate constant of condensed-phase bimolecular reactions is derived. The key feature of
the proposed model is the formulation of the energy-dependent rate constant in terms of the diffusion rate
and the ratio of the volume in phase space that leads to product over the total volume. The dependence of the
bimolecular rate constant by the reduced bawtierE */kT is given in explicit form in terms of the incomplete

and the complete gamma functions of Euler. The performance of the proposed model is tested against the
experimental rate constants for the Menschutkin reaction by fitting the parameters of the expression for the
rate constant to experimental data at various temperatures. The potential energy barrier obtained from the
regression (16.75 kcal md) is close to the independently computed value at the CPCM B3LYP/CRENBL
6—311()G(d) level of theory (16.84 kcal mot). The corresponding fitting to the transition state theory
expression affords the lower value of 14.65 kcal mol

1. Introduction respectively. The system has a reduced baier SE*, a
numbera of active modes energetically coupled, and crosses
rghe reaction barrier with a frequeney The dependence of the
rate constant of the potential energy is not purely exponential,

In a previous work, an expression for unimolecular rate
constants was proposed to resolve the discrepancy betwee

calculated potential energy barriers for enzyme-catalyzed reac- . ? :
tions and the corresponding quantity obtained by an Eyring plot and eq 1.1 predicts the curved Eyring plots observed by Stein

of the experimental rate constants at various temperatures.for chymotryp;m (Flgure 1). The relat|onsh|p between the
Wolfender places enthalpies of activation for a number of number of active oscillators and t_he potential energy barrier
enzyme-catalyzed processes around-18 kcal mofl. The was investigated for the hydrqu5|s df-acetylL-tryptophan
corresponding reactions in solvent exhibit a wider range of €thYl ester and\-acetyli-tyrosine ethyl ester catalyzed by
enthalpies of activation, corresponding to half-livesirs sto ~ -chymotrypsin: The frequency factors obtained are of the
10° years. On the other hand, quantum chemistry calculations ©'der 1+ 10° Hz, in agreement with the values given by
on model enzyme systems fail to give potential energy reaction Hammes$ for individual rate constants converting various
barriers below~20 kcal mot 1,3 thus affording calculated rate intermediates for the hydrolysis of an amide substrate.
constants based on the transition state theory (TST) many orders Also, the effective coupling between modes in catalytic
of magnitude below the observed values. This fact is a proteins was observed by Agarwahrough dynamic simula-
consequence of the exponential form of the rate constants giventions. Excess energy was placed in a vibrational mode of the
by TST, where the potential energy barrier only appears as anprotein with a consequent increase of productive trajectories.
exponent. Alternatively, allowing efficient energy coupling This work aims to naturally extend the model to bimolecular
between low-frequency protein vibrational modes to the reaction reactions in solution. The Menschutkin reaction (alkylation of
coordinate, one obtains a different form of the expression for amines) has been extensively studied both from the experimental
the rate constant, namely and theoretical points of view. In particular, in a theoretical
4 ~ work,’ rate constants were calculated according to TST making
k(%) = Vﬂ I'(ax) use of accurate partition functions for the condensed phase.
z, T'(a) The regression of the experimental rate constants by Arnett
for the reaction of Chl with 3-bromopyridine in acetonitrile
that is able to afford the observed rate constants for enzyme-to the Eyring equation giveAH¥ = 13.82 kcal mot! andASf
catalyzed reactions with the intrinsic potential energy barriers = —32.09 cal mot! K1, respectively. The modified partition

(1.1)

computed ab initio. In eq 1.1 the quantities functions for the condensed phase affordesi = —24.86, but
. the calculated rate constant was 3 orders of magnitude lower
I'(a) = j; dx ¢ e than the observed value. This discrepancy is caused by a
calculated barrier of 16.84 kcal mdlat the CPCM B3LYP/
and CRENBL-6-311()G(d) level of theory. In fact, a regression

" of the experimental rate constants to the TST expression
F@ax) = [ dxx e

KT g s
are the complete and incomplete gamma functions of Euler, k(T) = Fﬁe ’E (1.2)

*To whom correspondence should be addressed. E-mail: . .
carlo.canepa@unito.it. with the partition functions corrected for the condensed phase
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Figure 1. Experimental Eyring plots for the-chymotrypsin-catalyzed
hydrolysis of Suc-Phe-pNALj, Suc-Ala-Phe-pNAZ), and Suc-Ala-
Ala-Pro-Phe-pNA 8). The calculated quantity Ihk/kT) is plotted
versus 1T (curves), with the rate constant given by the expresgion
= I(@X)/T(@) (7 = vZ/z in eq 1.1).

(the values of, partition functions per unit volume are reported
in Table 1) yields a potential energy barrier of 14.65 kcalThol

2. Statistical Model for Bimolecular Reactions in the
Condensed Phase

Two species A and B with total energy collide with
formation of a vibrationally excited species C*, which in turn
can revert back to reactants or evolve to prodirisith the
unimolecular rate constanks; andk, (Scheme 1).

SCHEME 1
kd k2
A+B(%’ C"— P
-1

The steady-state approximation for C* gives the energy-
dependent rate constant

ki

"B =i Tk

(2.1)

The elementary energy-dependent rate congtdatthe product
of the fundamental frequenay, and the ratio of phase-space
volume leading to product and the total volume

% +
E.E%) dE
L=, P 3 . (2.2a)
»(E) dE + p*(E,E") dE
and
+ +
E.E%) dE
k,=v, P(EE) (2.2b)

 p(E) dE + p(EEY) dE

In egs 2.2ab p*(E, E¥) represents the density of states of the
transition structure, whereggE) is that of the corresponding
reactant species. The frequengyincludes the rotational motion
of the reactant molecules leading to the interaction (via
vibrational degrees of freedom) in the direction of the reaction
coordinate forming the transition structure. The unimolecular
rate constant&, andk_, are expressed as the fraction of the
volume of phase space of the system C* (watlvibrational

modes andh active modes) that leads to products or reactants,
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respectively, multiplied by the intrinsic response frequencies
v—1 andv,.1° Within this formulation, the energy-dependent rate
constant is given by

ki(E)

p(E)
p'(EE)

K(EE) = (2.3)

n

with 7 = v_i/v,. It is convenient to express quantities that
depend on energy and temperature in terms of the reduced
energyx = E and the reduced barrigr= SE¥, with 8 = (kT)~%.

The energy-dependent rate constant is thus the product of the
diffusion rate constariy and the probability of having energy

in excess of the reduced potential energy baixier a active
modes

1p(X)
P (%)
The quantityo¥(x,X) may be derived as follows. The joint density
of states with energy betwedffl andE in a active modes is

PEE) = [ de p()ps oE— ©)

Using the classical form for the density of states, we have

Ktk o)+ p (xR

S -

-1
+ 1) (2.4)

a—1 s—a—1
E € (E - E)
PEE) = fode - -
(a— ! (s—a— 1) M hw!
1= i=at+1l

1

/I;E d6 Ga—l(E _ E)s—a—l

s

+
hvT'(@) I'(s— a)

=
Changing the variable ta = ¢/E, we get
S kT xX? 1 4

S —— d ua—ll_ s—a—1
=thy' T@T (s —a) K w170

pF(xX) =

The classical vibrational partition function is

It S KT . S KT 25)
= —_— —e = —_— .
“7Jo (s -1, L,
so we have
BT 4 o
Fro o) — 149 _ pnSa-1
PR = e @r6=3) S, dui i1 —u)

The integral may be expressed in terms of the complete and
incomplete beta functions of Euler

f;x du * 11— u**=B(as— a) — B(as— axXx)

The joint density of states may thus be written as

ﬁztxs_lrl _ B(as— ax/x)
I | B(as— a)

The quantity in brackets was already defined in a previous
work!! asy,(x,X). Fors anda integers it may be integrated by

pf(x%) = (2.6)
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kZ T(@x)

k(X) = (2.15)

Remarkably, equality 2.14 states that the thermal-averaged rate
constant is independent of the total number of coordinates
but it is only dependent on the numtzeof coordinates coupled

to the reaction. Plots of the ratlt{a,X)/T"(a) are shown in Figure

3 as functions of andx. Fora > 1 this function significantly
differs from the exponentia . In particular, there is a domain

of X where the first derivative is close to zero ak(k) does

not change significantly varying.

Figure 2. Plots of the functionW(x,2) with various values of the
parameters (1) anda (2).

parts to give 3. Methods of Calculation

a1ls— 1\/g\i QAs-1-i Quantum chemistry calculations were carried out using the
9 — -~ _n Gaussian 98 suite of progrartsuytilizing redundant internal
Y(XX) = 1 (2.7) ; SV
;( i )(x) ( x) coordinates geometry optimizatidhAll structures were fully
optimized at the B3LYP level of theory. The CRENBI® basis
When the number of active modes is one, eq 2.7 reduces to theset was used for the iodine atom and the 6-311G(d) for the other
classical expressiop;(xX) = (1 — X/X)° ~ L Plots of the function ~ atoms of the substrates GHand 3-bromopyridine. A set of
y are shown in Figure 2 for different values of the parameters diffuse functions with exponent 0.0639 was also added to the
s and a. With the density of states 2.6, we may express the nitrogen atom of pyridine. This combination of basis sets is

ratio of volumes in phase space as designated CRENBI6-311()G(d). Solvation calculations based
on continuum models were carried out with the polarizable
p*(x,y() z\f ~ conductor (CPCM) methoH.Vibrational frequency calculations
= —P4(XX) (2.8) were used to characterize the stationary points as either minima
p(x) & or first-order saddle points at the level indicated. Molecular

graphics were obtained with the program MoldrewThe

Consequently, the probability of reaction is " ) .
q Y P y partition functions were evaluated at various temperatures and

z, -1 1 bar making use of a model where the rotational contribution
P(X) = —jFl + 1) (2.9) is formulated for the condensed phds€he vibrational con-
2, Va tribution of the partition functions was calculated within the

o ) harmonic oscillator approximatiof.
The rate constant is given by the thermodynamic average of

ka(¥) P(X) 4. Computational Results

The structures of the intermediate reactant clusteaigd the
(2.10) corresponding transition structure (Bpfor the reaction of
3-bromopyridine and iodomethane in acetonitrile, optimized at
the CPCM B3LYP/CRENBLES-311(+)G(d) level of theory, are
With the density of vibrational states of the cluster C* taken as reported in Figure 4. For these structures and isolated reactants,
the classical expression eq 2.10 then takes the general form hoth the ratio of the vibrational partition function of the
transition structure to the reactant clusteilz(,, used in eq
p(x) = ﬁ_z" -1 (2.11) 2.15) and the corresponding ratio of partition functions per unit
I'(s) volume @f/g*cB, used in eq 1.2) were computed at the same
. level of theory at the experimental temperatures, and are reported
ﬂi & lg 7 (2.12) in Table 1.
Z\fipa ’ With these data, an unconstrained nonlinear regression of
experimental rate constants for the methylation of 3-bromopy-
Expression 2.12 may be evaluated numerically, once an exprestidine to eq 2.15 was performed with the Levenbekgarquardt
sion forkg(x) is provided. In this work, we consider reactions algorithm*® and the resulting plot is reported in Figure 5.
that are not diffusion-limited and neglect the dependence of the Analogous regressions were performed on the same set of data
diffusion rate constark; on the energy. Since both the ratig making use of eq 1.2, and the relative standard deviatiops (
7 andy are of the order 10 andy4(x2) <1, we may safely ~ from then experimental point&(T;)
neglect 1 in parentheses in 2.12 to get

-1
5 i —+ 1 Me_x

k® = [ dx k) v,

kr()‘<)=%f)_(°°dx k(2L +1

+
(X = E ELI‘” dx v e (2.13)
Szl XV |
Using the equality are reported in Table 2. The regression optimized the relevant
parameters, i.e.E* in eq 1.2, and bothky/n and E* in eq
1 2.15.

© —1 —X __ 1 °° —1_—X
fz dx y(x 2 "e _F(a)j; dxxX""e (2.14) Notwithstanding the fact that the proposed model in its present
form lacks the ability to compute rate constants from first

which is proven in the appendix, we have the final form principles, a regression to expression 2.15 affords a potential

T



Bimolecular Reactions in Solution

J. Phys. Chem. A, Vol. 110, No. 49, 20063293

TABLE 1: Ratios of Condensed-Phase Total Partition Functions per Unit Volume and Their Vibrational Contributions for the
Structures CHal (), 3-bromopyridine (g8), Cluster (g¢), and TS (#, )2

TIK 273.88 283.95 293.95 303.87
(@1 GB)N 4.0154x 10710 3.9502x 10710 3.8853x 10710 3.8225x 10710
! 9.1182x 10°5 9.0318x 10°5 8.9420x 10°5 8.8500x 1075
+
k/L mol-1s1 5.11x 107 1.35x 10°5 3.12x 10° 7.00x 10°5
k/L mol-1s-1c 4.69% 10°° 1.24x 10°5 3.06x 1075 7.05% 1075
k/L mol -1 510 5.14x 107 1.32x 10°5 3.14x 10° 6.99x 1075

aThe calculations are at the CPCM B3LYP/CRENBE311()G(d) level of theory at various temperatures. The experimental and the computed
bimolecular rate constants for the reaction ofsC&hd 3-bromopyridine in acetonitrile are also reporteBxperimental from Arnett, E. M.; Reich,
R.J. Am. Chem. S0d 98Q 102, 5892-5902.¢ Calculated from eq 1.2 witk* = 14.65 kcal mot. ¢ Calculated from eq 2.15 witky/y = 1.77 x

10° L mol~t st andEf = 16.75 kcal mot?.

15T
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Figure 3. Plots of the expressiof(a,z)/T'(a) as a function ofa (1)
andz (2).
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Figure 4. Structures and potential energy barrigg*)( for the
intermediate cluster and transition structure for the alkylation of
3-bromopyridine by iodomethane in acetonitrile at the CPCM B3LYP/
CRENBL:6-311¢)G(d) level of theory. Geometries are fully opti-
mized, and distances are in angstroms.

energy barrier for the Menschutkin reaction in Figure 4 of 16.75
kcal molL, very close to the corresponding barrier computed
at the CPCM B3LYP/CRENBL16-311(+)G(d) level of theory
(16.84 kcal mot?). This fact, and the ability to predict the
curved Eyring plots in Figure 1, strongly support eqs 1.1 and

2.15 for the unimolecular and bimolecular rate constants,

- a==6
1105 T ki =1.7710°
k/m’ mol” s” E*=16.75
L ]
510 © T
270 280 290 300 310
T/K

Figure 5. Regressions of the experimental rate constants for the
reaction of CHI with 3-bromopyridine in acetonitrile. The dots
represent experimental points and the curve a plot of eq 2.15 for the
indicated values of the parameteas ky/y (m®* mol~* s7%), and E¥
(potential energy barrier, kcal md).

TABLE 2: Parameters for the Various Expressions in the
Text Giving the Rate Constant as a Function of

Temperature?
eq pre-exp Ef o
1.2 2.397x 1¢° 14.65 5.863x 102
2.15 8.397x 10¢ 16.75 1.201x 102

a All parameters were obtained by regressions to the experimental
rate constants for the reaction g@tdnd 3-bromopyridine in acetonitrile.
Partition functions are calculated at the CPCM B3LYP/CRENBL
311H)G(d) level of theory (at the same level of theory the corre-
sponding barrier is 16.84 kcal md).

The six coupled modea obtained by the fitting of eq 2.15
to the experimental rate constants are considerably less than
what has been obtained in the case on enzyme catalysis. This
fact may be explained by the more disordered structure of a
solvent with respect to the specific active site of an enzyme,
but this dynamical effect reflects the substantial participation
of the solvent in determining the reaction rate.

5. Conclusions

1. The elementary rate constants of a bimolecular encounter
(for the association to an intermediate cluster and dissociation
to reactants and products) are expressed in terms of their
diffusion coefficients and the density of vibrational states of
the cluster and transition structure.

2. The energy-dependent rate constant is in turn formulated
in terms of the diffusion rate constants and the fundamental

respectively. On the other hand, the regression of experimentalprobability @/ziwa + 1)71, the ratio of the volume in phase
rate constants to eq 1.2 (Table 2) affords a lower potential energyspace leading to products over the total volume. The thermo-

barrier (14.65 kcal moft) with respect to the DFT value.
The estimate® value of the ration is about 2 orders of

magnitude higher than that already found for gas-phase reac-

dynamic average of the energy-dependent rate constant affords
the final expression for the thermal-averaged rate constant.
3. The proposed functional form of the rate constant is fitted

tions1° The condensed phase is thus more efficient in deactivat- to the corresponding experimental values of a well studied

ing the intermediate clusterGn Scheme 1 with respect to the
gas phase.

process and the temperature dependence of the experimental
data is well reproduced.
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Figure 6. Plots of the functionJ(x,z2) with various values of the
parameters (1) anda (2).

4. The number of active modes that minimizes the relative

Canepa

f =92+ C
To find the value ofC, we observe that, for = 0, eq 2.14
givesf(0) = g(0) = 1, and that implie€ = 0. This completes
the proof. The equality 2.14 may be equivalently stated defining
the function

_ R G
Jx,2 = wa(x,z)@e - @e (6.5)
and its property
S dxJx2) =0 (6.6)

standard deviation from the experimental rate constants is foundryo pehavior ofi(x,2) is plotted in Figure 6

to be considerably lower than that found for enzyme-catalyzed

reactions. This difference is attributed to the short-range structureReferences and Notes

of liquids, as opposite to the optimal structure of enzymes.

6. Appendix. Proof of Theorem 2.14

First, we consider the left-hand side of eq 2.14 as a function

f(2). Its first derivative with respect tais given by

1

—1 .-z
e (227 e

T 1 0 81/)& —1 _—X
f'(2 = @f; dx E(X,Z)Xs 1e -
(6.1)

The second term on the right-hand side of eq 6.1 is equal to 5902.

zero since it follows from 2.6 thatya(zz) = 0. The first
derivative ofya(X,2) is given by

iC) 1(2)&_1(1—3)5_a_l 6.2)

NWa,
32 %) = T s — a) X X

Substituting 6.2 in 6.1 we have

f(2 =
1 e _ I'(s) Y,  Zsal) o1«
r(s)fz dx( I(@I(s— a) x(>z<) (1 >Z<) )XS e

that simplifies to

vl = a1
fr —— _ xaS—a—l.—x
4] @e-a [ dx(x—2° e
Changing the variable of integration to= x — z, we obtain
Za—l o o Za—le—z
fr - _ d us a (z+u) —
@ =" rare= a)fo ! € (@

(6.3)

The right-hand side of eq 2.14 is also a funct@af z, and its

first derivative is given by

7 e’
I'(a)

g@=- (6.4)

We have thus shown that the derivatives with respea @b
both sides of 2.14 are equal. Consequently, the functi@)s
andg(z) differ at most by a constant
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