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An expression for the rate constant of condensed-phase bimolecular reactions is derived. The key feature of
the proposed model is the formulation of the energy-dependent rate constant in terms of the diffusion rate
and the ratio of the volume in phase space that leads to product over the total volume. The dependence of the
bimolecular rate constant by the reduced barrierxj ) E q/kT is given in explicit form in terms of the incomplete
and the complete gamma functions of Euler. The performance of the proposed model is tested against the
experimental rate constants for the Menschutkin reaction by fitting the parameters of the expression for the
rate constant to experimental data at various temperatures. The potential energy barrier obtained from the
regression (16.75 kcal mol-1) is close to the independently computed value at the CPCM B3LYP/CRENBL‚
6-311(+)G(d) level of theory (16.84 kcal mol-1). The corresponding fitting to the transition state theory
expression affords the lower value of 14.65 kcal mol-1.

1. Introduction

In a previous work,1 an expression for unimolecular rate
constants was proposed to resolve the discrepancy between
calculated potential energy barriers for enzyme-catalyzed reac-
tions and the corresponding quantity obtained by an Eyring plot
of the experimental rate constants at various temperatures.
Wolfenden2 places enthalpies of activation for a number of
enzyme-catalyzed processes around 10-12 kcal mol-1. The
corresponding reactions in solvent exhibit a wider range of
enthalpies of activation, corresponding to half-lives from 5 s to
109 years. On the other hand, quantum chemistry calculations
on model enzyme systems fail to give potential energy reaction
barriers below∼20 kcal mol-1,3 thus affording calculated rate
constants based on the transition state theory (TST) many orders
of magnitude below the observed values. This fact is a
consequence of the exponential form of the rate constants given
by TST, where the potential energy barrier only appears as an
exponent. Alternatively, allowing efficient energy coupling
between low-frequency protein vibrational modes to the reaction
coordinate, one obtains a different form of the expression for
the rate constant, namely

that is able to afford the observed rate constants for enzyme-
catalyzed reactions with the intrinsic potential energy barriers
computed ab initio. In eq 1.1 the quantities

and

are the complete and incomplete gamma functions of Euler,

respectively. The system has a reduced barrierxj ) âEq, a
numbera of active modes energetically coupled, and crosses
the reaction barrier with a frequencyν. The dependence of the
rate constant of the potential energy is not purely exponential,
and eq 1.1 predicts the curved Eyring plots observed by Stein4

for chymotrypsin (Figure 1). The relationship between the
number of active oscillators and the potential energy barrier
was investigated for the hydrolysis ofN-acetyl-L-tryptophan
ethyl ester andN-acetyl-L-tyrosine ethyl ester catalyzed by
R-chymotrypsin.1 The frequency factorsν obtained are of the
order 1 ÷ 103 Hz, in agreement with the values given by
Hammes5 for individual rate constants converting various
intermediates for the hydrolysis of an amide substrate.

Also, the effective coupling between modes in catalytic
proteins was observed by Agarwal6 through dynamic simula-
tions. Excess energy was placed in a vibrational mode of the
protein with a consequent increase of productive trajectories.

This work aims to naturally extend the model to bimolecular
reactions in solution. The Menschutkin reaction (alkylation of
amines) has been extensively studied both from the experimental
and theoretical points of view. In particular, in a theoretical
work,7 rate constants were calculated according to TST making
use of accurate partition functions for the condensed phase.8

The regression of the experimental rate constants by Arnett9

for the reaction of CH3I with 3-bromopyridine in acetonitrile
to the Eyring equation gives∆Hq ) 13.82 kcal mol-1 and∆Sq

) -32.09 cal mol-1 K-1, respectively. The modified partition
functions for the condensed phase afforded∆Sq ) -24.86, but
the calculated rate constant was 3 orders of magnitude lower
than the observed value. This discrepancy is caused by a
calculated barrier of 16.84 kcal mol-1 at the CPCM B3LYP/
CRENBL‚6-311(+)G(d) level of theory. In fact, a regression
of the experimental rate constants to the TST expression

with the partition functions corrected for the condensed phase
* To whom correspondence should be addressed. E-mail:

carlo.canepa@unito.it.

ka(xj) ) ν
zv

q

zv

Γ(a,xj)

Γ(a)
(1.1)

Γ(a) ) ∫0

∞
dx xa-1e-x

Γ(a,xj) ) ∫xj

∞
dx xa-1e-x

kr(T) ) kT
h

qq

qAqB
e-âEq

(1.2)

13290 J. Phys. Chem. A2006,110,13290-13294

10.1021/jp063120n CCC: $33.50 © 2006 American Chemical Society
Published on Web 11/14/2006



(the values ofq, partition functions per unit volume are reported
in Table 1) yields a potential energy barrier of 14.65 kcal mol-1.

2. Statistical Model for Bimolecular Reactions in the
Condensed Phase

Two species A and B with total energyE collide with
formation of a vibrationally excited species C*, which in turn
can revert back to reactants or evolve to productsP with the
unimolecular rate constantsk-1 andk2 (Scheme 1).

The steady-state approximation for C* gives the energy-
dependent rate constant

The elementary energy-dependent rate constantk2 is the product
of the fundamental frequencyν2 and the ratio of phase-space
volume leading to product and the total volume

and

In eqs 2.2a-b Fq(E, Eq) represents the density of states of the
transition structure, whereasF(E) is that of the corresponding
reactant species. The frequencyν2 includes the rotational motion
of the reactant molecules leading to the interaction (via
vibrational degrees of freedom) in the direction of the reaction
coordinate forming the transition structure. The unimolecular
rate constantsk2 and k-1 are expressed as the fraction of the
volume of phase space of the system C* (withs vibrational
modes anda active modes) that leads to products or reactants,

respectively, multiplied by the intrinsic response frequencies
ν-1 andν2.10 Within this formulation, the energy-dependent rate
constant is given by

with η ) ν-1/ν2. It is convenient to express quantities that
depend on energy and temperature in terms of the reduced
energyx ) âE and the reduced barrierxj ) âEq, with â ) (kT)-1.
The energy-dependent rate constant is thus the product of the
diffusion rate constantkd and the probability of having energy
in excess of the reduced potential energy barrierxj in a active
modes

The quantityFq(x,xj) may be derived as follows. The joint density
of states with energy betweenEq and E in a active modes is

Using the classical form for the density of states, we have

Changing the variable tou ) ε/E, we get

The classical vibrational partition function is

so we have

The integral may be expressed in terms of the complete and
incomplete beta functions of Euler

The joint density of states may thus be written as

The quantity in brackets was already defined in a previous
work11 asψa(x,xj). For s anda integers it may be integrated by

Figure 1. Experimental Eyring plots for theR-chymotrypsin-catalyzed
hydrolysis of Suc-Phe-pNA (1), Suc-Ala-Phe-pNA (2), and Suc-Ala-
Ala-Pro-Phe-pNA (3). The calculated quantity ln(hkr/kT) is plotted
versus 1/T (curves), with the rate constant given by the expressionkr

) ν̃Γ(a,xj)/Γ(a) (ν̃ ) νzv
q/zv in eq 1.1).
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parts to give

When the number of active modes is one, eq 2.7 reduces to the
classical expressionψ1(x,xj) ) (1 - xj/x)s - 1. Plots of the function
ψ are shown in Figure 2 for different values of the parameters
s and a. With the density of states 2.6, we may express the
ratio of volumes in phase space as

Consequently, the probability of reaction is

The rate constant is given by the thermodynamic average of
kd(x) P(x)

With the density of vibrational states of the cluster C* taken as
the classical expression eq 2.10 then takes the general form

Expression 2.12 may be evaluated numerically, once an expres-
sion for kd(x) is provided. In this work, we consider reactions
that are not diffusion-limited and neglect the dependence of the
diffusion rate constantkd on the energy. Since both the ratiozv/
zv

q andη are of the order 103,10 andψa(x,z) e1, we may safely
neglect 1 in parentheses in 2.12 to get

Using the equality

which is proven in the appendix, we have the final form

Remarkably, equality 2.14 states that the thermal-averaged rate
constant is independent of the total number of coordinatess,
but it is only dependent on the numbera of coordinates coupled
to the reaction. Plots of the ratioΓ(a,xj)/Γ(a) are shown in Figure
3 as functions ofa andxj. For a > 1 this function significantly
differs from the exponentiale-xj. In particular, there is a domain
of xj where the first derivative is close to zero andkr(xj) does
not change significantly varyingxj.

3. Methods of Calculation

Quantum chemistry calculations were carried out using the
Gaussian 98 suite of programs,12 utilizing redundant internal
coordinates geometry optimization.13 All structures were fully
optimized at the B3LYP14 level of theory. The CRENBL15 basis
set was used for the iodine atom and the 6-311G(d) for the other
atoms of the substrates CH3I and 3-bromopyridine. A set of
diffuse functions with exponent 0.0639 was also added to the
nitrogen atom of pyridine. This combination of basis sets is
designated CRENBL‚6-311(+)G(d). Solvation calculations based
on continuum models were carried out with the polarizable
conductor (CPCM) method.16 Vibrational frequency calculations
were used to characterize the stationary points as either minima
or first-order saddle points at the level indicated. Molecular
graphics were obtained with the program Moldraw.17 The
partition functions were evaluated at various temperatures and
1 bar making use of a model where the rotational contribution
is formulated for the condensed phase.8 The vibrational con-
tribution of the partition functions was calculated within the
harmonic oscillator approximation.18

4. Computational Results

The structures of the intermediate reactant cluster (1) and the
corresponding transition structure (TS-2) for the reaction of
3-bromopyridine and iodomethane in acetonitrile, optimized at
the CPCM B3LYP/CRENBL‚6-311(+)G(d) level of theory, are
reported in Figure 4. For these structures and isolated reactants,
both the ratio of the vibrational partition function of the
transition structure to the reactant cluster (zv

q/zv, used in eq
2.15) and the corresponding ratio of partition functions per unit
volume (qq/qAqB, used in eq 1.2) were computed at the same
level of theory at the experimental temperatures, and are reported
in Table 1.

With these data, an unconstrained nonlinear regression of
experimental rate constants for the methylation of 3-bromopy-
ridine to eq 2.15 was performed with the Levenberg-Marquardt
algorithm19 and the resulting plot is reported in Figure 5.
Analogous regressions were performed on the same set of data
making use of eq 1.2, and the relative standard deviations (σ)
from then experimental pointskh(Ti)

are reported in Table 2. The regression optimized the relevant
parameters, i.e.,Eq in eq 1.2, and bothkd/η and Eq in eq
2.15.

Notwithstanding the fact that the proposed model in its present
form lacks the ability to compute rate constants from first
principles, a regression to expression 2.15 affords a potential

Figure 2. Plots of the functionΨ(x,z) with various values of the
parameterss (1) anda (2).
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energy barrier for the Menschutkin reaction in Figure 4 of 16.75
kcal mol-1, very close to the corresponding barrier computed
at the CPCM B3LYP/CRENBL‚6-311(+)G(d) level of theory
(16.84 kcal mol-1). This fact, and the ability to predict the
curved Eyring plots in Figure 1, strongly support eqs 1.1 and
2.15 for the unimolecular and bimolecular rate constants,
respectively. On the other hand, the regression of experimental
rate constants to eq 1.2 (Table 2) affords a lower potential energy
barrier (14.65 kcal mol-1) with respect to the DFT value.

The estimated20 value of the ratioη is about 2 orders of
magnitude higher than that already found for gas-phase reac-
tions.10 The condensed phase is thus more efficient in deactivat-
ing the intermediate cluster C* in Scheme 1 with respect to the
gas phase.

The six coupled modesa obtained by the fitting of eq 2.15
to the experimental rate constants are considerably less than
what has been obtained in the case on enzyme catalysis. This
fact may be explained by the more disordered structure of a
solvent with respect to the specific active site of an enzyme,
but this dynamical effect reflects the substantial participation
of the solvent in determining the reaction rate.

5. Conclusions

1. The elementary rate constants of a bimolecular encounter
(for the association to an intermediate cluster and dissociation
to reactants and products) are expressed in terms of their
diffusion coefficients and the density of vibrational states of
the cluster and transition structure.

2. The energy-dependent rate constant is in turn formulated
in terms of the diffusion rate constants and the fundamental
probability (zv/zv

qψa + 1)-1, the ratio of the volume in phase
space leading to products over the total volume. The thermo-
dynamic average of the energy-dependent rate constant affords
the final expression for the thermal-averaged rate constant.

3. The proposed functional form of the rate constant is fitted
to the corresponding experimental values of a well studied
process and the temperature dependence of the experimental
data is well reproduced.

TABLE 1: Ratios of Condensed-Phase Total Partition Functions per Unit Volume and Their Vibrational Contributions for the
Structures CH3I (qA), 3-bromopyridine (qB), Cluster (qcl), and TS (zq, qq)a

T/K 273.88 283.95 293.95 303.87

(qq/qAqB)N 4.0154× 10-10 3.9502× 10-10 3.8853× 10-10 3.8225× 10-10

zv
q/zv

cl 9.1182× 10-5 9.0318× 10-5 8.9420× 10-5 8.8500× 10-5

kr/L mol-1 s-1b 5.11× 10-6 1.35× 10-5 3.12× 10-5 7.00× 10-5

kr/L mol-1 s-1c 4.69× 10-6 1.24× 10-5 3.06× 10-5 7.05× 10-5

kr/L mol-1 s-1d 5.14× 10-6 1.32× 10-5 3.14× 10-5 6.99× 10-5

a The calculations are at the CPCM B3LYP/CRENBL‚6-311(+)G(d) level of theory at various temperatures. The experimental and the computed
bimolecular rate constants for the reaction of CH3I and 3-bromopyridine in acetonitrile are also reported.b Experimental from Arnett, E. M.; Reich,
R. J. Am. Chem. Soc. 1980, 102, 5892-5902.c Calculated from eq 1.2 withEq ) 14.65 kcal mol-1. d Calculated from eq 2.15 withkd/η ) 1.77×
105 L mol-1 s-1 andEq ) 16.75 kcal mol-1.

Figure 3. Plots of the expressionΓ(a,z)/Γ(a) as a function ofa (1)
andz (2).

Figure 4. Structures and potential energy barrier (Eq) for the
intermediate cluster and transition structure for the alkylation of
3-bromopyridine by iodomethane in acetonitrile at the CPCM B3LYP/
CRENBL‚6-311(+)G(d) level of theory. Geometries are fully opti-
mized, and distances are in angstroms.

Figure 5. Regressions of the experimental rate constants for the
reaction of CH3I with 3-bromopyridine in acetonitrile. The dots
represent experimental points and the curve a plot of eq 2.15 for the
indicated values of the parametersa, kd/η (m3 mol-1 s-1), and Eq

(potential energy barrier, kcal mol-1).

TABLE 2: Parameters for the Various Expressions in the
Text Giving the Rate Constant as a Function of
Temperaturea

eq pre-exp Eq σ

1.2 2.397× 103 14.65 5.863× 10-2

2.15 8.397× 104 16.75 1.201× 10-2

a All parameters were obtained by regressions to the experimental
rate constants for the reaction CH3I and 3-bromopyridine in acetonitrile.
Partition functions are calculated at the CPCM B3LYP/CRENBL‚6-
311(+)G(d) level of theory (at the same level of theory the corre-
sponding barrier is 16.84 kcal mol-1).
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4. The number of active modes that minimizes the relative
standard deviation from the experimental rate constants is found
to be considerably lower than that found for enzyme-catalyzed
reactions. This difference is attributed to the short-range structure
of liquids, as opposite to the optimal structure of enzymes.

6. Appendix. Proof of Theorem 2.14

First, we consider the left-hand side of eq 2.14 as a function
f(z). Its first derivative with respect toz is given by

The second term on the right-hand side of eq 6.1 is equal to
zero since it follows from 2.6 thatψa(z,z) ) 0. The first
derivative ofψa(x,z) is given by

Substituting 6.2 in 6.1 we have

that simplifies to

Changing the variable of integration tou ) x - z, we obtain

The right-hand side of eq 2.14 is also a functiong of z, and its
first derivative is given by

We have thus shown that the derivatives with respect toz of
both sides of 2.14 are equal. Consequently, the functionsf(z)
andg(z) differ at most by a constant

To find the value ofC, we observe that, forz ) 0, eq 2.14
givesf(0) ) g(0) ) 1, and that impliesC ) 0. This completes
the proof. The equality 2.14 may be equivalently stated defining
the function

and its property

The behavior ofJ(x,z) is plotted in Figure 6.
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